BigHashsetSa.cs

Big Hash Set based onĀ BigArray.cs

Uses a single array.

using System;
using System.Collections;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
[DebuggerDisplay("Count = {" + nameof(Count) + "}")]
[Serializable]
public class BigHashsetSa<T> : MonitorActionFunc, IEnumerable
{
    public enum Method
    {
        Grow,
        Compress
    }
    private volatile BigArray<Bucket>        _buckets;
    private          long                    _count;
    private          Method                  _method;
    internal         IBigEqualityComparer<T> Comparer;
    public BigHashsetSa(long size, Method method = Method.Grow) : this(size, new BigComparer<T>(), method)
    {
    }
    public BigHashsetSa(long size, IBigEqualityComparer<T> comparer, Method method = Method.Grow)
    {
        if (comparer == null)
            comparer = new BigComparer<T>();
        Comparer = comparer;
        _buckets = new BigArray<Bucket>(size);
        Count    = 0;
        _method  = method;
    }
    public long Count
    {
        get
        {
            return Lock(this, () =>
            {
                return _count;
            });
        }
        private set
        {
            Lock(this, () =>
            {
                _count = value;
            });
        }
    }
    public long                       ElementCount         => GetElementCount();
    public long                       NumberOfEmptyBuckets => GetNumberOfEmptyBuckets();
    public (long mDepth, long index)  MaximumBucketDepth   => GetMaximumBucketDepth();
    public float                      LoadRatio            => GetLoadRatio();
    public KeyValuePair<long, long>[] BucketDepthList      => GetBucketDepthList();
    IEnumerator IEnumerable.GetEnumerator()
    {
        return GetEnumerator();
    }
    public void Clear()
    {
        _buckets.Clear();
    }
    public bool Add(T item)
    {
        return Lock(this, () =>
        {
            if (_method == Method.Grow)
                EnsureSize();
            var hashCode = Comparer.GetHashCode(item) & long.MaxValue;
            if (FindEntry(item, hashCode).APos != -1)
                return false;
            var pos = hashCode % _buckets.Length;
            if (_buckets[pos] == null)
                _buckets[pos] = new Bucket();
            _buckets[pos].Add(item);
            Count++;
            return true;
        });
    }
    public T[] ToArray()
    {
        var newArray = new T[Count];
        using (var en = GetEnumerator())
        {
            var ptr = 0;
            while (en.MoveNext())
            {
                var value = en.Current;
                if (value == null)
                    break;
                newArray[ptr++] = value;
            }
            return newArray;
        }
    }
    private (long APos, long BPos) FindEntry(T item, long hashCode)
    {
        if (Count == 0)
            return (-1, -1);
        if (hashCode == 0)
        {
            var a = 0;
        }
        var aPos = hashCode % _buckets.Length;
        var bPos = 0;
        if (_buckets[aPos] == null)
        {
            _buckets[aPos] = new Bucket();
            return (-1, -1);
        }
        foreach (var i in _buckets[aPos].Values)
        {
            if (Comparer.Equals(i, item))
                return (aPos, bPos);
            bPos++;
        }
        return (-1, -1);
    }
    private void EnsureSize()
    {
        if (Count >= _buckets.Length)
        {
            var cArray = ToArray();
            _buckets = new BigArray<Bucket>(_buckets.Length + BigArray<T>.Granularity);
            foreach (var i in cArray)
            {
                var hashCode = Comparer.GetHashCode(i) & long.MaxValue;
                var pos      = hashCode % _buckets.Length;
                if (_buckets[pos] == null)
                    _buckets[pos] = new Bucket();
                _buckets[pos].Add(i);
            }
        }
    }
    public bool Contains(T item)
    {
        return Lock(this, () =>
        {
            var hashCode = Comparer.GetHashCode(item) & long.MaxValue;
            return FindEntry(item, hashCode).APos != -1;
        });
    }
    public IEnumerator<T> GetEnumerator()
    {
        return Lock(this, () =>
        {
            return GetEnum();
        });
    }
    public IEnumerator<T> GetEnum()
    {
        for (var i = 0; i < _buckets.Length; i++)
            if (_buckets[i] != null)
                for (var j = 0; j < _buckets[i].Count; ++j)
                    yield return _buckets[i].Values[j];
    }
    public long GetElementCount()
    {
        var count = 0;
        for (var i = 0; i < _buckets.Length; i++)
            if (_buckets[i] != null)
            {
                var c = _buckets[i].Count;
                count += c;
            }
        return count;
    }
    public long GetNumberOfEmptyBuckets()
    {
        var count = 0;
        for (var i = 0; i < _buckets.Length; i++)
            if (_buckets[i] == null)
                count++;
        return count;
    }
    public long GetNumberOfFilledBuckets()
    {
        var count = 0;
        for (var i = 0; i < _buckets.Length; i++)
            if (_buckets[i] != null)
                count++;
        return count;
    }
    public (long mDepth, long index) GetMaximumBucketDepth()
    {
        var max = 0;
        var j   = 0;
        for (var i = 0; i < _buckets.Length; i++)
            if (_buckets[i] != null)
            {
                var count = _buckets[i].Count;
                if (count > max)
                {
                    max = count;
                    j   = i;
                }
            }
        return (max, j);
    }
    public KeyValuePair<long, long>[] GetBucketDepthList()
    {
        var bdic = new Dictionary<long, long>();
        for (var i = 0; i < _buckets.Length; i++)
            if (_buckets[i] != null)
            {
                var count = _buckets[i].Count;
                if (!bdic.ContainsKey(count))
                {
                    bdic.Add(count, 0);
                    bdic[count]++;
                }
                else
                {
                    bdic[count]++;
                }
            }
        return bdic.OrderByDescending(x => x.Value).ToArray();
    }
    public float GetLoadRatio()
    {
        var x = Count;
        var y = _buckets.Length;
        var r = x / (float) y;
        return r;
    }
    internal class Bucket
    {
        public int Count;
        public T[] Values;
        public Bucket()
        {
            Values = new T[2];
            Count  = 0;
        }
        public void Add(T item)
        {
            if (Count >= Values.Length)
            {
                var ta = new T[Values.Length + 1];
                Array.Copy(Values, 0, ta, 0, Count);
                Values = ta;
            }
            Values[Count++] = item;
        }
    }
}

BigArray.cs

Big Array Class Arrays Over 2GB Limit

Updated: Dec-14,2020

using System;
using System.Collections;
using System.Collections.Generic;
using System.Diagnostics;
using System.Threading;
using Microsoft.VisualBasic.Devices;
[DebuggerDisplay("Count = {Count}")]
[Serializable]
public class BigArray<T> : MonitorActionFunc, IEnumerable<T>, IDisposable
{
    public const     int   ShiftCount  = 19;
    public const     int   Granularity = 1 << ShiftCount;
    private          bool  _disposed;
    private volatile T[][] _mdArray;
    private volatile Table _table = new Table();
    private volatile bool  _writing;
    public BigArray() : this(0)
    {
    }
    public BigArray(long size)
    {
        if (size < Granularity)
            size = Granularity;
        var i = 0;
        try
        {
            _table.MaximumNumberOfArrays = (int) (new ComputerInfo().AvailablePhysicalMemory / Granularity);
            _table.NumberOfActiveArrays  = (int) ((size + (Granularity - 1))                 / Granularity);
            var val = (long) _table.NumberOfActiveArrays                                     * Granularity;
            _table.Length = Interlocked.Read(ref val);
            var ms  = new MeasureSize<T>();
            var oas = ms.GetByteSize(Granularity);
            var am  = new ComputerInfo().AvailablePhysicalMemory;
            var rm  = (ulong) (oas * _table.NumberOfActiveArrays * Granularity);
            var maa = am / (ulong) (oas * Granularity);
            if (rm > am || (ulong) _table.NumberOfActiveArrays > maa)
                throw new Exception($"Requested memory {rm} exceeds available memory {am}");
            _mdArray = new T[maa][];
            for (i = 0; i < _table.NumberOfActiveArrays; ++i)
                _mdArray[i] = new T[Granularity];
            _writing = false;
        }
        catch (Exception ex)
        {
            throw new Exception($"Exception: {ex.Message}");
        }
    }
    public long Count
    {
        get
        {
            return Lock(_table.Count, () =>
            {
                return _table.Count;
            });
        }
    }
    public long Length
    {
        get
        {
            return Lock(_table.Length, () =>
            {
                return _table.Length;
            });
        }
    }
    public T this[long index]
    {
        get
        {
            while (_writing)
                new SpinWait().SpinOnce();
            if (index >= _table.Length)
                throw new Exception($"Getter: Index out of bounds, Index: '{index}' must be less than the Length: '{Length}'.");
            return _mdArray[index >> ShiftCount][index & (Granularity - 1)];
        }
        set
        {
            Lock(this, () =>
            {
                if (index + 1 > _table.Length)
                    ResizeArray();
                _writing                                                 = true;
                _mdArray[index >> ShiftCount][index & (Granularity - 1)] = value;
                _table.Count++;
                _writing = false;
            });
        }
    }
    public void Dispose()
    {
        Dispose(true);
    }
    IEnumerator<T> IEnumerable<T>.GetEnumerator()
    {
        return GetEnumerator();
    }
    IEnumerator IEnumerable.GetEnumerator()
    {
        return GetEnumerator();
    }
    public void Add(T Item)
    {
        Lock(this, () =>
        {
            if (_table.Count + 1 > _table.Length)
                ResizeArray();
            _writing = true;
            var x = _table.Count >> ShiftCount;
            var y = _table.Count & (Granularity - 1);
            _mdArray[x][y] = Item;
            _table.Count++;
            _writing = false;
        });
    }
    private void ResizeArray()
    {
        try
        {
            Interlocked.Increment(ref _table.NumberOfActiveArrays);
            var val = (long) _table.NumberOfActiveArrays * Granularity;
            _table.Length = Interlocked.Read(ref val);
            var ms  = new MeasureSize<T>();
            var oas = ms.GetByteSize(Granularity);
            var am  = new ComputerInfo().AvailablePhysicalMemory;
            var rm  = (ulong) (oas * _table.NumberOfActiveArrays * Granularity);
            var maa = am / (ulong) (oas * Granularity);
            if (rm > am || (ulong) _table.NumberOfActiveArrays > maa)
                throw new Exception($"Requested memory {rm} exceeds available memory {am}");
            _mdArray                                  = new T[maa][];
            _mdArray[_table.NumberOfActiveArrays - 1] = new T[Granularity];
        }
        catch (Exception ex)
        {
            throw new Exception($"Exception: {ex.Message}");
        }
    }
    public void Clear()
    {
        Lock(this, () =>
        {
            _writing = true;
            for (var a = 0L; a < _table.NumberOfActiveArrays; a++)
                Array.Clear(_mdArray[a], 0, Granularity);
            _table.Count = 0;
            _writing     = false;
        });
    }
    public long IndexOf(T item)
    {
        return Lock(this, () =>
        {
            var i = 0L;
            for (; i < _table.NumberOfActiveArrays; i++)
            {
                while (_writing)
                    new SpinWait().SpinOnce();
                var pos = Array.IndexOf(_mdArray[i], item, 0);
                if (pos != -1)
                    return i * Granularity + pos;
            }
            return -1;
        });
    }
    public BigArray<T> Copy(long newsize)
    {
        return Lock(this, () =>
        {
            var temp = new BigArray<T>(newsize);
            for (var a = 0L; a < _table.NumberOfActiveArrays; a++)
            {
                while (_writing)
                    new SpinWait().SpinOnce();
                Array.Copy(_mdArray[a], temp._mdArray[a], Granularity);
            }
            temp._table.Count = Count;
            return temp;
        });
    }
    public void FromArray(T[][] array)
    {
        Lock(this, () =>
        {
            _table.NumberOfActiveArrays = array.GetUpperBound(0) + 1;
            var val = (long) _table.NumberOfActiveArrays * Granularity;
            _table.Length = Interlocked.Read(ref val);
            _mdArray      = new T[_table.NumberOfActiveArrays][];
            for (var i = 0; i < _table.NumberOfActiveArrays; ++i)
                _mdArray[i] = new T[Granularity];
            for (var a = 0L; a < _table.NumberOfActiveArrays; a++)
                Array.Copy(array[a], _mdArray[a], Granularity);
        });
    }
    public T[][] ToArray()
    {
        return Lock(this, () =>
        {
            var ta = new T[_table.NumberOfActiveArrays][];
            for (var i = 0; i < _table.NumberOfActiveArrays; ++i)
                ta[i] = new T[Granularity];
            for (var a = 0L; a < _table.NumberOfActiveArrays; a++)
                Array.Copy(_mdArray[a], ta[a], Granularity);
            return ta;
        });
    }
    private void Dispose(bool disposing)
    {
        if (!_disposed)
            if (disposing)
                _mdArray = null;
        _disposed = true;
    }
    public IEnumerator<T> GetEnumerator()
    {
        return Lock(this, () =>
        {
            return GetEnum();
        });
    }
    public IEnumerator<T> GetEnum()
    {
        for (var i = 0; i < Count; i++)
            yield return this[i];
    }
    private class Table
    {
        public          long Count;
        public          long Length;
        public volatile int  MaximumNumberOfArrays;
        public volatile int  NumberOfActiveArrays;
    }
}

MiniArray.cs

A Small Generic Array Class

using System;
using System.Collections;
using System.Collections.Generic;
using System.Runtime.InteropServices;
[Serializable]
public class MiniArray<T> : IEnumerable<T>
{
    public T[] Array;
    public MiniArray() : this(101)
    {
    }
    public MiniArray(int cap)
    {
        Count = 0;
        Array = new T[cap];
    }
    public int Count
    {
        get;
        private set;
    }
    public T this[int index]
    {
        get
        {
            if (index > Array.Length)
                throw new Exception("Error: Index out of range.");
            return Array[index];
        }
        set
        {
            EnsureSize();
            Array[index] = value;
            Count++;
        }
    }
    IEnumerator<T> IEnumerable<T>.GetEnumerator()
    {
        return new Enumerator<T>(this);
    }
    IEnumerator IEnumerable.GetEnumerator()
    {
        return new Enumerator<T>(this);
    }
    private void EnsureSize()
    {
        if (Count >= Array.Length)
        {
            var NewLength = Array.Length == 0 ? 1 : Array.Length * 2;
            var newtArray = new T[NewLength];
            System.Array.Copy(Array, 0, newtArray, 0, Array.Length);
            Array = newtArray;
        }
    }
    public void Add(T item)
    {
        EnsureSize();
        Array[Count] = item;
        Count++;
    }
    public T[] ToArray()
    {
        var newtArray = new T[Count];
        System.Array.Copy(Array, 0, newtArray, 0, Count);
        return newtArray;
    }
    public IEnumerable<T> All()
    {
        for (var i = 0; i < Count; ++i)
            yield return Array[i];
    }
    public void Clean()
    {
        var newtArray = new T[Count];
        System.Array.Copy(Array, 0, newtArray, 0, Count);
        Array = newtArray;
    }
    public void Clear()
    {
        System.Array.Clear(Array, 0, Count);
        Count = 0;
    }
}
[Serializable]
[StructLayout(LayoutKind.Sequential)]
public struct Enumerator<T> : IEnumerator<T>
{
    private readonly MiniArray<T> thing;
    private          int          index;
    internal Enumerator(MiniArray<T> thing)
    {
        this.thing = thing;
        index      = 0;
        Current    = default;
    }
    public void Dispose()
    {
    }
    public bool MoveNext()
    {
        var tthing = thing;
        if (index < tthing.Count)
        {
            Current = tthing[index];
            index++;
            return true;
        }
        index   = thing.Count + 1;
        Current = default;
        return false;
    }
    public T Current
    {
        get;
        private set;
    }
    object IEnumerator.Current => Current;
    void IEnumerator.Reset()
    {
        index   = 0;
        Current = default;
    }
}

SizeHelper.cs

Non-Linear Array Size Adjustment Class

using System;
using System.Collections.Generic;
using Microsoft.VisualBasic.Devices;
public class SizeHelper<T>
{
    private static readonly FixedIntXPrimality bp = new FixedIntXPrimality(64);
    private readonly        int                AllocatedSizeLimit;
    public                  int[]              Curve;
    private                 int                Resizes;
    public SizeHelper()
    {
        var measure   = new MeasureSize<T>();
        var sizeOfOne = measure.GetByteSize();
        var am        = new ComputerInfo().AvailablePhysicalMemory;
        AllocatedSizeLimit = (int) ((long) am / sizeOfOne);
    }
    public int GetNewSize(int currentSize)
    {
        Resizes++;
        if (Curve == null)
            BuildCurve(currentSize);
        foreach (var v in Curve)
            if (v > currentSize)
                return v;
        var nv = GetNextValue(currentSize);
        return nv != -1 ? nv : int.MaxValue;
    }
    private int GetNextValue(int currentValue)
    {
        for (var value = currentValue | 1; value < AllocatedSizeLimit; value += 16384)
        {
            if (value < 0)
                break;
            if (bp.IsPrime(value))
                return value + 1;
        }
        return -1;
    }
    private void BuildCurve(int Size)
    {
        int Sizer(int oldSize)
        {
            try
            {
                oldSize = (int) (uint) oldSize;
                var log     = Math.Log(oldSize);
                var inv     = 1.0 / log * 4;
                var newSize = oldSize   * (1.0 + inv);
                return (int) (uint) newSize;
            }
            catch
            {
                return AllocatedSizeLimit;
            }
        }
        var curlst = new List<int>();
        var value  = Size | 1;
        do
        {
            value = Sizer(value);
            if (value < 0)
                break;
            if (value < AllocatedSizeLimit)
                curlst.Add(value);
        } while (value < AllocatedSizeLimit);
        Curve = curlst.ToArray();
        var dl   = new List<int>();
        var last = 0;
        for (var i = 0; i < Curve.Length; ++i)
        {
            if (i > 0)
                last = Curve[i - 1];
            var v = Curve[i];
            dl.Add(v - last);
        }
        var str = "";
        foreach (var v in dl)
            str += $"{v},";
    }
}

ArrayMixer.cs

Uses Sha3 to Shuffle Primitive Arrays

using System;
public class ArrayMixer
{
    private readonly SHA3ModInt _alg;
    private readonly int        _moveSize;
    public ArrayMixer() : this(256, 24)
    {
    }
    public ArrayMixer(int hashSize) : this(hashSize, 24)
    {
    }
    public ArrayMixer(int hashSize, int rounds)
    {
        _alg      = new SHA3ModInt(hashSize, rounds);
        _moveSize = _alg.ComputeHash(2.GetBytes()).Length;
    }
    public byte[] Mix(byte[] buf, int iterations = 1000)
    {
        var bufferSize = buf.Length;
        var lBuffer    = new byte[_moveSize];
        var oBuffer    = new byte[bufferSize];
        for (var i = 0; i < iterations; ++i)
        {
            var bytesSuffled = 0;
            var moveSize     = _moveSize;
            var p            = 0;
            while (true)
            {
                var rBytesShuffle = bufferSize - bytesSuffled;
                if (rBytesShuffle < moveSize)
                    moveSize = rBytesShuffle;
                if (rBytesShuffle <= 0)
                    break;
                Buffer.BlockCopy(buf, p, lBuffer, 0, moveSize);
                lBuffer = _alg.ComputeHash(lBuffer);
                Buffer.BlockCopy(lBuffer, 0, oBuffer, p, moveSize);
                p            += moveSize;
                bytesSuffled += moveSize;
            }
            Buffer.BlockCopy(oBuffer, 0, buf, 0, bufferSize);
        }
        lBuffer.Fill(0);
        oBuffer.Fill(0);
        return buf;
    }
    public ushort[] Mix(ushort[] buf, int iterations = 1000)
    {
        var bb = buf.GetBytes();
        return Mix(bb, iterations).ToUShortArray();
    }
    public uint[] Mix(uint[] buf, int iterations = 1000)
    {
        var bb = buf.GetBytes();
        return Mix(bb, iterations).ToUIntArray();
    }
    public ulong[] Mix(ulong[] buf, int iterations = 1000)
    {
        var bb = buf.GetBytes();
        return Mix(bb, iterations).ToULongArray();
    }
    /// <summary>
    ///     Will round up finalSize to the nearest 8 byte boundary.
    /// </summary>
    /// <param name="ba"></param>
    /// <param name="finalSize"></param>
    /// <returns></returns>
    private static ulong[] ByteArrayToULongArray(byte[] ba, int finalSize)
    {
        var minSize = ba.Length / 8;
        if (finalSize < minSize)
            finalSize = minSize;
        ba = PadULong(ba);
        var os = finalSize / 8;
        if (os * 8 < finalSize)
            os++;
        var result = new ulong[os];
        for (var i = 0; i < ba.Length; i += 8)
            Buffer.BlockCopy(ba, i, result, i, 8);
        return result;
    }
    private static byte[] PadULong(byte[] ba)
    {
        var s = ba.Length % 8;
        switch (s)
        {
            case 0:
                break;
            case 1:
                Array.Resize(ref ba, ba.Length + 7);
                ba[ba.Length - 1] = 0x80;
                ba[ba.Length - 2] = 0x80;
                ba[ba.Length - 3] = 0x80;
                ba[ba.Length - 4] = 0x80;
                ba[ba.Length - 5] = 0x80;
                ba[ba.Length - 6] = 0x80;
                ba[ba.Length - 7] = 0x80;
                break;
            case 2:
                Array.Resize(ref ba, ba.Length + 6);
                ba[ba.Length - 1] = 0x80;
                ba[ba.Length - 2] = 0x80;
                ba[ba.Length - 3] = 0x80;
                ba[ba.Length - 4] = 0x80;
                ba[ba.Length - 5] = 0x80;
                ba[ba.Length - 6] = 0x80;
                break;
            case 3:
                Array.Resize(ref ba, ba.Length + 5);
                ba[ba.Length - 1] = 0x80;
                ba[ba.Length - 2] = 0x80;
                ba[ba.Length - 3] = 0x80;
                ba[ba.Length - 4] = 0x80;
                ba[ba.Length - 5] = 0x80;
                break;
            case 4:
                Array.Resize(ref ba, ba.Length + 4);
                ba[ba.Length - 1] = 0x80;
                ba[ba.Length - 2] = 0x80;
                ba[ba.Length - 3] = 0x80;
                ba[ba.Length - 4] = 0x80;
                break;
            case 5:
                Array.Resize(ref ba, ba.Length + 3);
                ba[ba.Length - 1] = 0x80;
                ba[ba.Length - 2] = 0x80;
                ba[ba.Length - 3] = 0x80;
                break;
            case 6:
                Array.Resize(ref ba, ba.Length + 2);
                ba[ba.Length - 1] = 0x80;
                ba[ba.Length - 2] = 0x80;
                break;
            case 7:
                Array.Resize(ref ba, ba.Length + 1);
                ba[ba.Length - 1] = 0x80;
                break;
        }
        return ba;
    }
    private static void Expand(ulong[] x, int iterations = 1)
    {
        var size = x.Length;
        for (var k = 0; k < iterations; ++k)
        for (var i = 0; i < size; ++i)
        {
            ulong n = 0;
            var   j = 0;
            while (j < size)
            {
                n ^= x[j];
                ++j;
            }
            x[i] = (n << 1) | (n >> 56);
        }
    }
    /// <summary>
    ///     ExpandAndMixArray resizes the array by extrusion then mixes the array using a Sha3 one way hash
    /// </summary>
    /// <param name="ba">The buffer</param>
    /// <param name="size">The final desired size</param>
    /// <param name="iterations">The number of iterations to mix the final array</param>
    public byte[] ExpandAndMixArray(byte[] ba, int size, int iterations = 1000)
    {
        var ula = ByteArrayToULongArray(ba, size);
        Expand(ula, 1);
        var array = ula.GetBytes();
        return Mix(array, iterations);
    }
    public ushort[] ExpandAndMixArray(ushort[] ba, int size, int iterations = 1000)
    {
        var bb = ba.GetBytes();
        return ExpandAndMixArray(bb, size, iterations).ToUShortArray();
    }
    public uint[] ExpandAndMixArray(uint[] ba, int size, int iterations = 1000)
    {
        var bb = ba.GetBytes();
        return ExpandAndMixArray(bb, size, iterations).ToUIntArray();
    }
    public ulong[] ExpandAndMixArray(ulong[] ba, int size, int iterations = 1000)
    {
        var bb = ba.GetBytes();
        return ExpandAndMixArray(bb, size, iterations).ToULongArray();
    }
}

EntropyGeneric.cs

Detect Entropy Levels from Primitive Data Arrays

using System;
using System.Collections.Generic;
public class EntropyGeneric<T>
{
    private const    double             NaturalLogOfTwo = 0.69314718055994530941723212145818;
    private readonly Dictionary<T, int> _hist           = new Dictionary<T, int>();
    private          bool               _mapStatus;
    public EntropyGeneric()
    {
        _hist.Clear();
        _mapStatus = false;
    }
    public (double entropy, int perfect) Entropy(T[] s)
    {
        if (_mapStatus)
        {
            _hist.Clear();
            _mapStatus = false;
        }
        foreach (var c in s)
            if (!_hist.ContainsKey(c))
                _hist.Add(c, 1);
            else
                _hist[c] += 1;
        _mapStatus = true;
        var e = 0.0;
        foreach (var v in _hist.Values)
        {
            if (v <= 0)
                continue;
            var r = v             / (double) s.Length;
            e -= r * (Math.Log(r) / NaturalLogOfTwo);
        }
        return (e, GetSize());
    }
    private byte[] ConvertTypeByteArray(T[] ia)
    {
        switch (Type.GetTypeCode(typeof(T)))
        {
            case TypeCode.Boolean:
                break;
            case TypeCode.Char:
                break;
            case TypeCode.SByte:
                break;
            case TypeCode.Byte:
                break;
            case TypeCode.Int16:
                break;
            case TypeCode.UInt16:
                break;
            case TypeCode.Int32:
                break;
            case TypeCode.UInt32:
                break;
            case TypeCode.Single:
                break;
            case TypeCode.String:
                break;
            case TypeCode.Decimal:
                break;
            case TypeCode.Int64:
                break;
            case TypeCode.UInt64:
                break;
            case TypeCode.Double:
                break;
            case TypeCode.DateTime:
                break;
            default:
                throw new ArgumentException("Type is not a valid primitive.");
        }
        return ia.GetBytesObject();
    }
    private int GetSize()
    {
        var size = 0;
        switch (Type.GetTypeCode(typeof(T)))
        {
            case TypeCode.Boolean:
                size = 8;
                break;
            case TypeCode.Char:
                size = 16;
                break;
            case TypeCode.SByte:
                size = 8;
                break;
            case TypeCode.Byte:
                size = 8;
                break;
            case TypeCode.Int16:
                size = 16;
                break;
            case TypeCode.UInt16:
                size = 16;
                break;
            case TypeCode.Int32:
                size = 32;
                break;
            case TypeCode.UInt32:
                size = 32;
                break;
            case TypeCode.Single:
                size = 32;
                break;
            case TypeCode.String:
                size = 32;
                break;
            case TypeCode.Decimal:
                size = 96;
                break;
            case TypeCode.Int64:
                size = 64;
                break;
            case TypeCode.UInt64:
                size = 64;
                break;
            case TypeCode.Double:
                size = 64;
                break;
            case TypeCode.DateTime:
                size = 64;
                break;
            default:
                throw new ArgumentException("Type is not a valid primitive.");
        }
        return size;
    }
}

ByteArraySegment.cs

Segment a byte array to 16, 32, 64 bit Arrays

using System;
using System.Collections.Generic;
using System.Numerics;
public class ByteArraySegment
{
    public IEnumerable<T[]> SegmentEnum<T>(T[] buffer, int size)
    {
        var idx = 0;
        var ptr = buffer.Length;
        while (ptr >= size)
        {
            var array = new T[size];
            Buffer.BlockCopy(buffer, idx, array, 0, size);
            ptr -= size;
            idx += size;
            yield return array;
        }
    }
    public List<byte[]> SegmentList(byte[] buffer, int size)
    {
        var list = new List<byte[]>(buffer.Length >> 2);
        var idx  = 0;
        var ptr  = buffer.Length;
        while (ptr >= size)
        {
            var _result = new byte[size];
            Buffer.BlockCopy(buffer, idx, _result, 0, size);
            list.Add(_result);
            ptr -= size;
            idx += size;
        }
        return list;
    }
    public char[] SegmentChar(byte[] buffer)
    {
        var len = buffer.Length;
        if (len % 2 != 0)
            throw new Exception("Buffer must be a multiple of 2.");
        var array = new char[len >> 1];
        Buffer.BlockCopy(buffer, 0, array, 0, len);
        return array;
    }
    public short[] Segment16(byte[] buffer)
    {
        var len = buffer.Length;
        if (len % 2 != 0)
            throw new Exception("Buffer must be a multiple of 2.");
        var array = new short[len >> 1];
        Buffer.BlockCopy(buffer, 0, array, 0, len);
        return array;
    }
    public ushort[] SegmentU16(byte[] buffer)
    {
        var len = buffer.Length;
        if (len % 2 != 0)
            throw new Exception("Buffer must be a multiple of 2.");
        var array = new ushort[len >> 1];
        Buffer.BlockCopy(buffer, 0, array, 0, len);
        return array;
    }
    public int[] Segment32(byte[] buffer)
    {
        var len = buffer.Length;
        if (len % 4 != 0)
            throw new Exception("Buffer must be a multiple of 4.");
        var array = new int[len >> 2];
        Buffer.BlockCopy(buffer, 0, array, 0, len);
        return array;
    }
    public float[] SegmentFloat(byte[] buffer)
    {
        var len = buffer.Length;
        if (len % 4 != 0)
            throw new Exception("Buffer must be a multiple of 4.");
        var array = new float[len >> 2];
        Buffer.BlockCopy(buffer, 0, array, 0, len);
        return array;
    }
    public uint[] SegmentU32(byte[] buffer)
    {
        var len = buffer.Length;
        if (len % 4 != 0)
            throw new Exception("Buffer must be a multiple of 4.");
        var array = new uint[len >> 2];
        Buffer.BlockCopy(buffer, 0, array, 0, len);
        return array;
    }
    public long[] Segment64(byte[] buffer)
    {
        var len = buffer.Length;
        if (len % 8 != 0)
            throw new Exception("Buffer must be a multiple of 8.");
        var array = new long[len >> 3];
        Buffer.BlockCopy(buffer, 0, array, 0, len);
        return array;
    }
    public double[] SegmentDouble(byte[] buffer)
    {
        var len = buffer.Length;
        if (len % 8 != 0)
            throw new Exception("Buffer must be a multiple of 8.");
        var array = new double[len >> 3];
        Buffer.BlockCopy(buffer, 0, array, 0, len);
        return array;
    }
    public ulong[] SegmentU64(byte[] buffer)
    {
        var len = buffer.Length;
        if (len % 8 != 0)
            throw new Exception("Buffer must be a multiple of 8.");
        var array = new ulong[len >> 3];
        Buffer.BlockCopy(buffer, 0, array, 0, len);
        return array;
    }
    public BigInteger[] SegmentBI(byte[] buffer, int size)
    {
        var idx  = 0;
        var ptr  = buffer.Length;
        var bi   = new BigInteger[buffer.Length / size];
        var ptr1 = 0;
        while (ptr >= size)
        {
            var array = new byte[size];
            Buffer.BlockCopy(buffer, idx, array, 0, size);
            ptr      -= size;
            idx      += size;
            bi[ptr1++] =  new BigInteger(array);
        }
        return bi;
    }
}